当你在电商平台搜索“苹果”,系统会推荐“水果”还是“手机”?或者直接跳到某个品牌旗舰店?短短一个词,背后承载了完全不同的购买意图。而推荐是否精准,直接影响用户的搜索体验,也影响平台的转化效率。
基于上述问题,快手在业界首次提出端到端的生成式统一查询推荐框架——OneSug,成功将召回、粗排、精排等多个阶段统一在一个生成模型中,显著提升了推荐效果与系统效率,在快手电商场景中实现了业务指标与用户体验的双重提升。
本工作相关成果《OneSug: The Unified End-to-End Generative Framework for E-commerce Query Suggestion》已被人工智能顶级会议 AAAI 2026 接收。
查询推荐(Query Suggestion)是现代电商搜索系统中的关键功能,通过在用户输入过程中实时推荐相关查询,帮助用户快速明确意图,提升搜索体验与转化效率。传统方法通常采用多阶段级联架构(MCA),虽然在效率与效果之间取得了一定平衡,但由于各阶段目标不一致、长尾查询召回困难等问题,限制了系统性能的进一步突破。
而近年来,生成式检索(Generative Retrieval)因其强大的语义理解与生成能力,在推荐与搜索领域展现出巨大潜力。然而,现有方法多聚焦于视频推荐,其本质上是一个开集到开集的任务,难以直接应用于输入输出都是开放词表的的查询推荐场景。